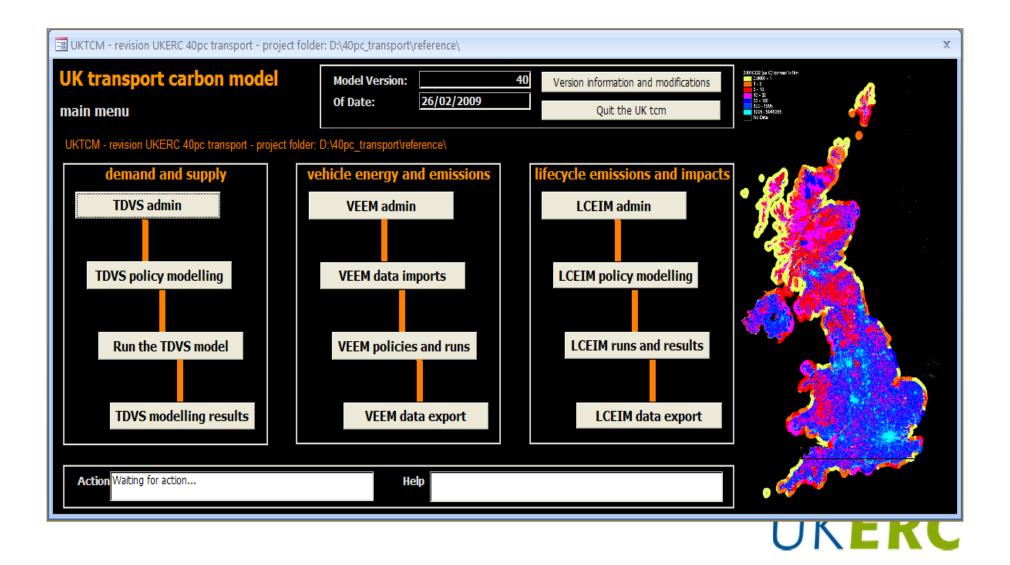


Decarbonising Personal Transport

Jillian Anable, The Centre for Transport Research, University of Aberdeen Christian Brand, The Environmental Change Institute, University of Oxford Nick Eyre, The Environmental Change Institute, University of Oxford

Energy and People event Edinburgh, 13th December 2013



UKERC Energy Demand | transport

- Development of a bespoke sectoral model: UK Transport Carbon Model (UKTCM)
- Scenario analysis to address key sensitivities in transport energy use/ CO₂
- Investigate how changing patterns of travel will affect energy demand
- Examine range, scale, timing of actions to reduce surface transport emissions
- Strategic policy modelling to provide evidence to policy makers

UK Transport and Carbon Model

Modelling focus

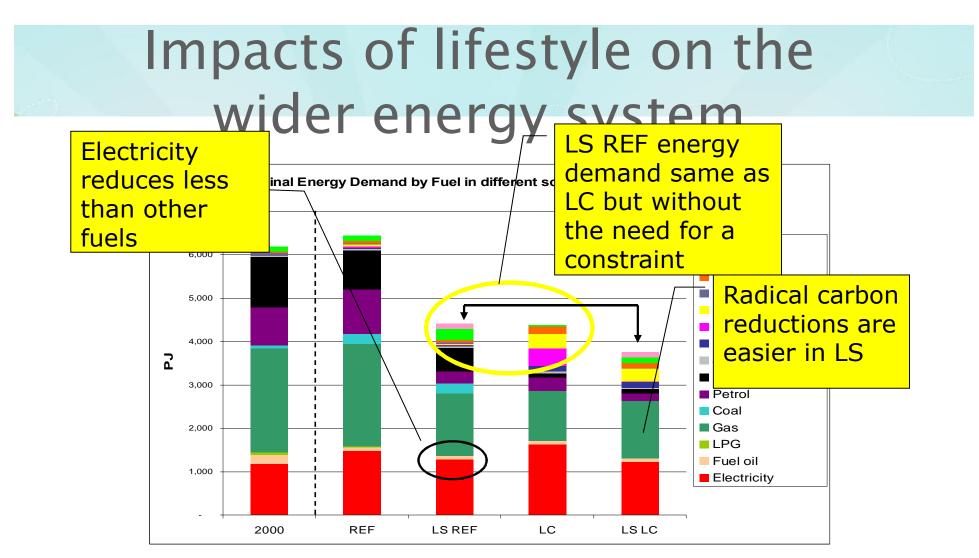
Modelling the (whole lifecycle) GHG impact of:

- ✓ Alternative projections of future travel demand
- ✓ Fiscal incentives for low carbon cars
- ✓Lower/higher speed limits
- Electric vehicle uptake

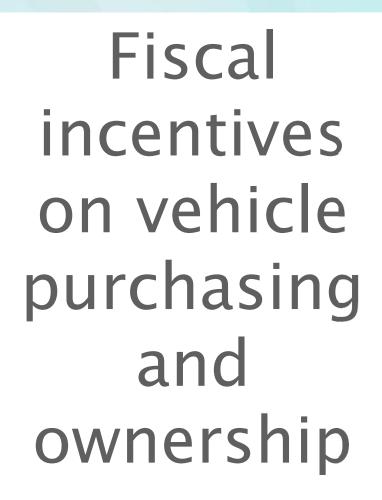
NB: Focus on surface passenger modes

UKERC

Alternative travel demand scenarios

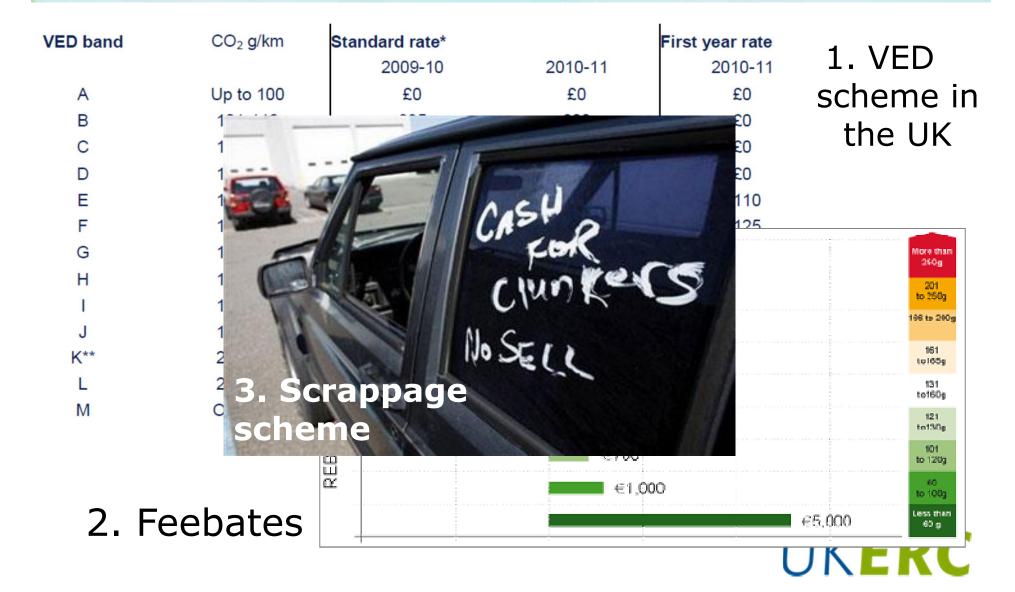


Transport sector – lifestyle and mobility changes in 2050


AccessibilityLocalism	Total distanc	Down 21%		
 Slower speeds Compact cities 	Mode choice	<u>Car</u> from 81% - 38% distance Cycling from 1% -13% distance		
Car-free zonesCar clubsICT	Vehicle choice	HEV, + BEV + PHEV = 77% share of vkms in 2050		
TeleworkingTele-shopping	Driving Style	Ecodriving = 5% reduction in CO2 per km by 2025		
Less air travelPolicy	Occupa ncy	Car occupancy up 23% by 2050		

acceptance

UKERC

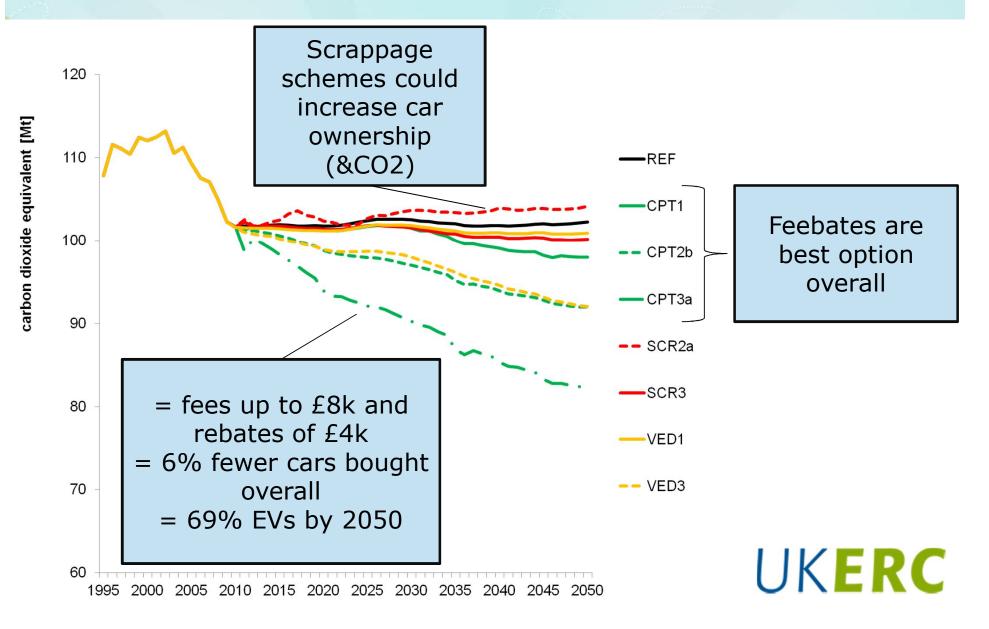


 Social and lifestyle change reduces total energy demand by ~15% below baseline levels by 2025 and ~30% by 2050
 UKERC

3 types of tax on car ownership:

Research questions

Which of these new car purchasing incentives:

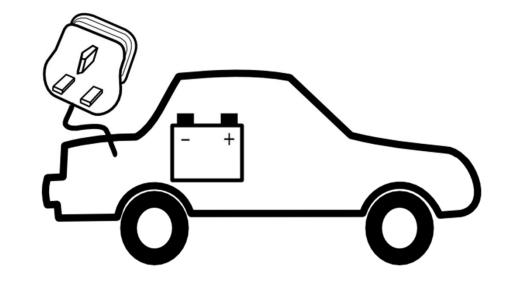

- 1. accelerate car technology transitions the fastest
- 2. save most life cycle GHG emissions
- 3. have few adverse revenue effects and
- 4. other benefits such as traffic reduction

policy scenarios

	Policy ambition					
Policies	'Moderate'	'High'	'Extreme'			
Purchase taxes / 'feebates'	CPT1/1a: Tax of £2k for >225g (>175g), tightening every 5 years	CPT2/2a/2b: Feebate: £4k fee for >200g to £2-4k rebate for <100g, tightening CPT2b: 5p/kWh duty	CPT3: Feebate: £8k tax for >200g to £4k rebate for <100g, tightening CPT3a : 5p/kWh duty			
Vehicle circulation taxes (VED)	VED1: Graded tax by year of purchase, fuel type and CO_2 ; higher 1 st year duty	VED2: as VED1 but tightening every 5 years	VED3: as VED2 but with double duty rates			
Scrappage rebate	SCR1: Simple rebate, 2009-2010 only (i.e. the recent UK Scrappage Incentive Scheme)	SCR2: Rebate £2k for <150g, tightening every 5 years SCR2a: variant assuming lower expected car life	SCR3: Rebate up to £2k, graded by CO ₂ , tightening every 5 years			

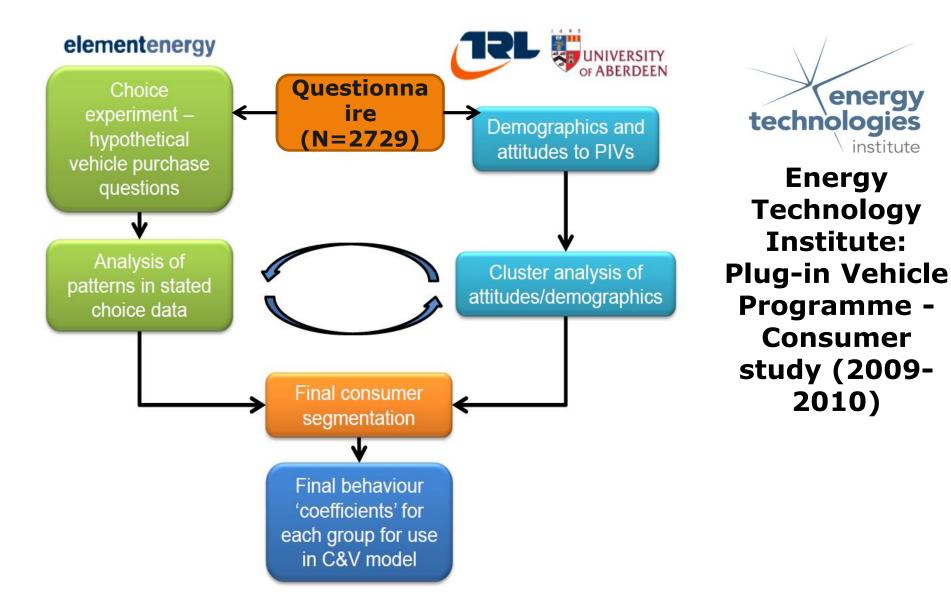
Scenario comparison – results

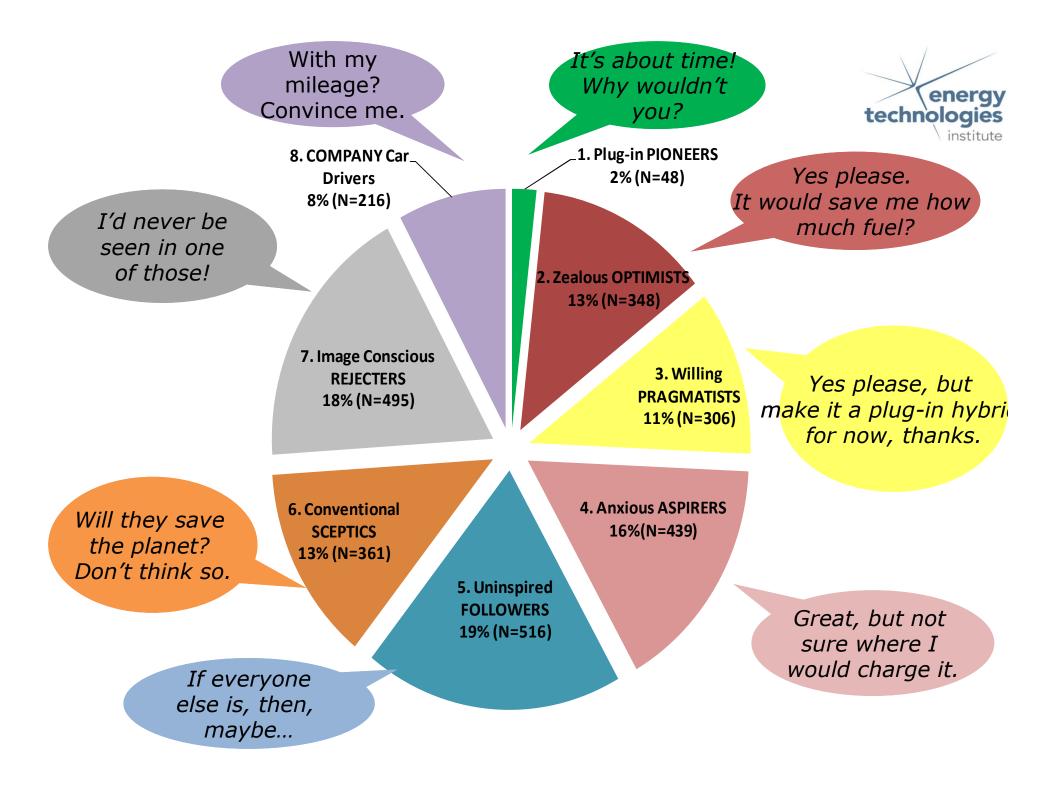
Conclusions (car purchase taxes)


The scenario modelling suggests that:

- ⁷ Feebates are best option overall
 - Accelerate low carbon uptake while being technology neutral
 - " Can be designed to be revenue neutral and can be applied equally to all vehicle sizes or classes
 - " But have to be stringent and adjust levels often
- Vehicle circulation taxes are less successful but could be applied in tandem with feebates to fill revenue loss
- Scrappage rebates are ineffective and potentially damaging in life cycle carbon terms
- ["] Need strong up-front price signals
- ["] Reward low carbon & penalise high carbon

Plug-in Vehicles

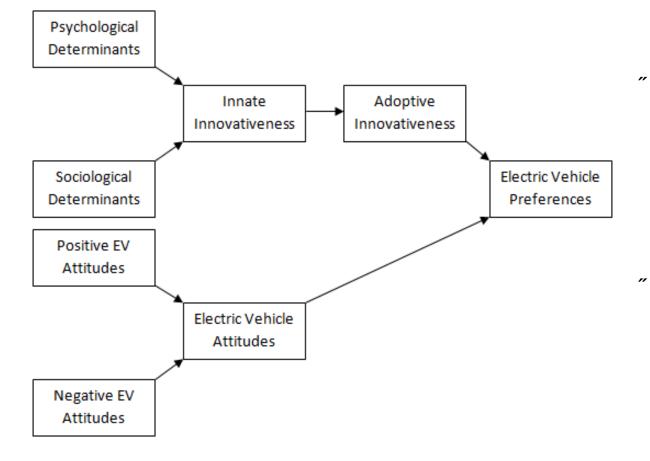



Modelling heterogenity

- How can we better model the socio-technical challenges (e.g. socioeconomic drivers of car purchase behaviour and 'taste heterogeneity') of electrification of the UK private car market?
- What are the lessons we can learn from using a more detailed consumer segmentation approach within a transport-energyenvironment systems model?
- What does modelling the dynamic nature of the car market tell us about timing and uptake of plug-in cars?
- How effective (in terms of energy demand and life cycle GHG emissions) are different policy instruments (including regulation, pricing, availability of charging infrastructure) on different consumer segments?

Consumer segmentation of plug-in vehicles

Mapping Uncertainty


Evidence Review + Semi-structured interviews with policy makers and other stakeholders

		Level			Nature	
Location		Statistical uncertainty	Scenario uncertainty	Recognised ignorance	Epistemic uncertainty	Variability uncertainty
Context	Natural, technological economic, social and political, representation					
Model	Model structure					
	Technical model					
Inputs	Driving forces					
	System data					

- How have key scientific, social and economic uncertainties been treated in the policy process?
- Who is taking responsibility for delivering targets (and therefore dealing with the uncertainty?) IKERC

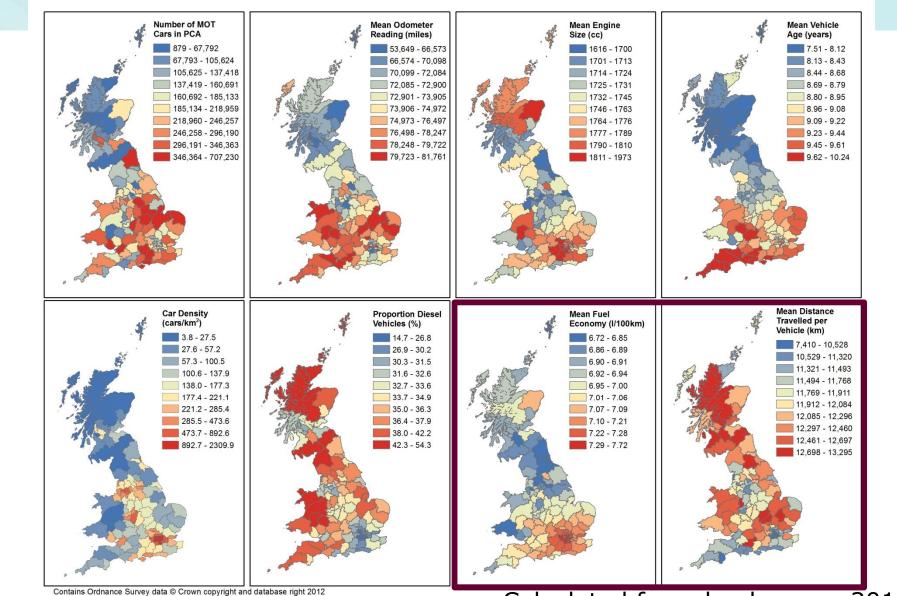
UKERC PhD Student:

Accelerating the Demand for Low Emission Vehicles: A Consumer Led Perspective (Craig Morton)

Socio-psychological constructs account for more variance in likely EV uptake than socio-economic characteristics

Innovativeness is positively related to EV preference

Associated projects



UKERC

Key Parameters from MOT Dataset

Calculated for calendar year 2012

MOT Data

Annual Mileage Emissions and Fuel Efficiency

Energy Data Gas and Electricity

Air Pollution

Concentrations Emissions

Census Data

Age, Income, Travel to Work, Occupation, Housing Type etc...

Accessibility Data

roximity of facilities and services Availability of Public Transport

Sport England

Cycling and Walking Data

National Public Transport Infra.

Other Consumption

Rhythms of DEMAND

- 1. Patterns, dynamics, structures:
 - Spatial, temporal, and social distribution of each practice: who does it where and when?
- 2. Time pressure and peak demand
 - Social synchronisation?
 - Peak demand and flexibility : how strong/hard is the structure? What can be changed by (what?) intervention?
- 3. Change over (macro) time
 - Birth, life and death of practices : how do practices evolve, change shape, expand, spread..?

Disruption: Key Arguments

- "We are failing change travel behaviour at a large enough scale to meet carbon reduction commitments
- Disruptions occur regularly and will become more frequent
- These may provide opportunities to create step change in right direction rather than return to status quo
- " May help develop policies that move away from simply `enablement'

Disruption: data

- Longitudinal qualitative ethnography with families – everyday life (Brighton and Lancaster)
- Unplanned events flooding, snow and ice, fuel shortage (national and local)
- Planned events workplace consolidation (York CC), Olympics 2012
- Large scale survey (Aberdeen, Reading, York, Liverpool, London, Yeovil & Chard): perceptions, experience, adaptiveness

UKERC Transport Outputs

Journal papers

- Brand, C., Anable, J. and Tran, M. (2013) Accelerating the transformation to a low carbon transport system: the role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK. Transportation Research A, pp.49, pp.132–148.
- Anable, J., Brand, C., Tran, M. and Eyre, N. (in press) Modelling transport energy demand: a sociotechnical approach. *Energy Policy.*
- Brand, C., Tran, M. and Anable, J. (2012) The UK Transport Carbon Model: an integrated lifecycle approach to explore low carbon futures. *Energy Policy.* 41, pp.125–138

Book Chapters

 Eyre, N., Anable, J, Brand, C., Layberry, R. and Strachan, N. (2010) The way we live from now on: lifestyle and energy consumption. Chapter 9 in P.Ekins et al. (eds) *Energy 2050: the transition to a secure and low carbon energy system for the UK*. Earthscan.

Reports

 Gross, R., Heptonstall, P., Anable, J., Greenacre, P. & E4Tech (2009) What policies are effective at reducing carbon emissions from surface passenger transport? A review of interventions to encourage behavioural and technological change. UKERC Report ISBN 1 903144 0 7 8.

Working Papers

- Brand, C. (2010) UK Transport Carbon Model, Reference Guide v1.0, UKERC Working Paper. Environmental Change Institute, Oxford.
- Brand, C. (2010) UK Transport Carbon Model, User Guide v1.0, UKERC Working Paper. Environmental Change Institute, Oxford.

Contact details

- Professor Jillian Anable , Chair of Transport and Energy Demand, The Centre for Transport Research, University of Aberdeen
 - Office Tel: 01224 273795
 - Mobile: 07930 330155
 - E-mail: j.anable@abdn.ac.uk
 - Website: <u>http://www.abdn.ac.uk/ctr</u>
- UKERC: <u>http://www.ukerc.ac.uk/</u>
- MOT: <u>http://www.abdn.ac.uk/ctr/research/currentbr-research-projects/mot/</u>
- DEMAND: <u>http://www.demand.ac.uk/</u>
- DISRUPTION: <u>http://www.disruptionproject.net/</u>

